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Static and dynamic epidemia on chains and trees with two- and three-dimensional loops
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The dynamic epidemic model considers the expansion of a cluster in a medium containing a fraaftion
mobile particles that are pushed by a propagation front. This model is exactly solved here on two- and
three-dimensional chains and a Bethe tree, which are all decorated with consecutive either hexagon or tetra-
hedron loops. The exact values for the percolation threskolhd the critical exponents are calculated and
compared to the static hindrance cases. The fraction of site candidates for particle trapping on a tree is the
relevant parameter for the threshold value of such dynamic epidemics in high dimensions.
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I. INTRODUCTION one with tetrahedrons as loops between difgg. 1(b)]. The
empty sites are denoted by open circles, while the sites oc-
The dynamic epidemic model is relevant for describingcupied by a particle are denoted by solid circles. The fraction
the spreading of a fluid in a medium containing mobile im- ¢ of sites that are candidates for particle trapping has a dif-
purities and also other physical systems such as river spreafkerent value on each lattice. For the chain looped with hexa-
ing, traffic jams, rough surfaces, electrical conduction in hetgons ¢=4, while ¢= % for the chain looped with tetrahe-
erogeneous media, and polymer growth in solutionsdrons. Let a fraction of sites be occupied by particles and
Vandewalle and Ausloogl] have solved exactly such a dy- for convenience let the front go from left to right. At each
namic epidemic model with the “growth—transfer-matrix” growth step, if a nearest-neighboring site on the right is
method for various chains and trees that contain loops an mpty, the site is invaded. However, if this site contains a
thus allow for trapping of particles alon@nd behindthe — h5dicle  the particle is pushed onto the next-nearest-
propagation front. The pus_hi_ng and trapping of particles inneighb(;ring siteif the latter is empty. If this next-nearest-
such a model lead to nontrivial surface roughriesS|. neighboring site contains a particle, the growth is blocked.

More complicated basic units and higher-dimensiona : . A
cases are of interest. It is indeed known that critical expoBNhen there is some bypassing channel, like in decorated

nents are dimensionality dependéat. Higher-dimensional chains, the percolation process is expected to take place up to

loops are also encountered in other fields of science such gome impurity concentration to be determined.
biology, traffic, and economics. Finally, in higher dimen-
sions, one can expect better agreement with theoretical con-

siderations based on a Bethe latt[é&d, which can be con- . . . .
sidered as an infinite-dimensional network. The basic set of local configurations on a chain of tetra-

The aim of this paper is to provide an exact solution of thehedrons contains four local sitéSig. 2). In order to describe
static and dynamic epidemics model on lattices with loopghe dynamical process of cluster spreading and particle push-
constructed in a plane or in three-dimensio¢@i) space. A ing on a chain looped with tetrahedrons, there afe-26
chain of hexagons, a 3D chain of tetrahedrons, and a tree @fifferent possible configurations to examiffgig. 2. As a
tetrahedrons are considered below. Notice that the chain withesult, a 1616 transfer matrixT has to be written corre-
hexagons generalizes the problem studied in Rdfalready  sponding to an invasion front from the left-hand site of the
as if a multiple invasion step or several stages can occur. Ighgin. As was pointed out in RdfL], the configuration label
traffic physics this can be considered to correspond to differyy “configuration order” is crucial for the optimal descrip-
ent by-passing velocities, or stops at parking places, in CryS;jon of the transfer matrices. Each element of Thenatrix

tal growth to different critical radii for trapping and conse- T;; is the probability of obtaining the configuration labeled
quently different “critical velocities”[6] and finally in fluid invading the configuration labeleidsuch thati)=ST; |j)
invasion to different retention times. K

Several configurations carry identical weight, but for a better
structure of the matrix and computational precision all 16
elements have been kept at first. The evolution rules and the
techniques of retrieving th§;; are described in detail in Ref.
In Fig. 1 two chains are presented: The first one is a chaifl] for the chain of triangles. The same procedure has been
decorated with hexagorn&ig. 1(a)] and the second chain is followed here. The nonzero elements of fhenatrix when
the epidemics invade the left-hand site of each configuration
(Fig. 2) can be easily written and are omitted here due to
*Present address: Laboratoire ddéEemmunications et Teder  space limitation.
tection, UniversiteCatholique de Louvain, 2 Place du Levant, B- One has to know the probability of finding the
1348 Louvain-la-Neuve, Belgium. Faxt359-2-975-3201. Elec- next configuration on the chain, i.e., the growth evolu-
tronic address: kristy@phys.acad.bg tion matrix G made of two vector rows

A. Chain of tetrahedrons

Il. STATIC AND DYNAMIC EPIDEMIA
ON LOOPED CHAINS
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FIG. 3. Nonzero eigenvalues, and\ _ of the growth evolu-
tion transfer matrixGT as a function of the fractior of particles
for a chain of tetrahedrons. The eigenvalue for the static case is also
illustrated.

FIG. 1. Two different types of chainga) a chain of hexagons
and (b) a chain of tetrahedrons. The empty sites are denoted by
open circles, while the sites occupied by a particle are denoted by

solid circles. X (4+24x+ 522+ 84x3+ 7xH V7], D)

Ne=3[7—4x+2x*>—5x3*=(1—x)

s,={1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0
which are both strictly less than 1 expect for0 (Fig. 3.
s,={0,0,0,0,1,0,0,1,0,1,1,0,1,1, 3,1 The critical pointx{™ occur when the largest eigenvalue is
equal to 1. The spreading of the invading cluster through the
Thus theG matrix can be constructed as each element of th&€hain is thus possible only in the absence of impurities since
row is multiplied byx3, x3(1-x), (1-x), or (1-x)®in  x{¥"=0.
the following manner: 1st row,s;(1—x)3;, 2nd row, One should note that the case of static particles is recov-
s,(1—x)%; 3rd to 5th rows,s;x(1—x)?; 6th to 8th rows, ered for aT matrix whose nonzero elements dfel), (3,3,
s;X(1—x)?; 9th to 11th rows,slxz(l—x); 12th to 14th  (4,4), and(9,9 only; each such element is equal to one. Thus
rows, s,;x*(1—x); 15th row, s;x*; 16th row, s,x>, where  the GT® matrix has only one nonzero somewhat trivial
each elemenG;; is the average number of configurations eigenvaluex=1—x (Fig. 3 giving X<St6) 0.
next to a configuration. The sum of the elements of each
column of G is also 1 since each local configuration is con-
nected to only one configuration on a chain. The growth B. Chain of hexagons
process is thus well described by the iteration of the matrix

GT. This matrix has two degenerate nonzero eigenvalues . Ona chgin O_f he_xagons, the basi_c set of Ioca_l configura-
given by tions contains six sites. Thu®2 64 different possible con-

figurations are needed to describe the epidemia propagation
on the chain with hexagon loops. A three-stage invasion has
to be considered due to existing configurations with two sites
A A A A on the top and/or bottom row being candidates on which the
1 5 3 4 particle trapping can take place. The trangfeaand growthG
matrices can be easily constructed. It has been numerically
/\ /\ /‘\ /\ estimated that two nonzero eigenvalues and \ _exist for
this dynamic epidemics. These eigenvalues are shown in Fig.
4 as a function of the particle fraction The critical fraction
of particles isx'¥"=0. One can easily observe that the cor-
A A A .&, respondingG T®® for static particles has only one nonzero
eigenvaluen (Fig. 4). The critical threshold for the static
model isx$®=0. One should note the linear dependence of
A A A _& the eigenvalue. corresponding to the static case on the frac-
13 14 15 16 tion x, in contrast to the one-dimensional chain looped with
squares.

FIG. 2. Sixteen local configurations used to describe the dy-
namic epidemics model on a chain of tetrahedrons. The empty sites
are denoted by open circles, while the sites occupied by a particle ar Various physical quantities usually exhibit a power-law
denoted by solid circles. divergence near a percolation threshold; such are the linear

C. Critical exponents
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branch over two is looped with a tetrahedron d@nda small portion
O I3 Il L . . . . .
o 02 o4 0.6 0.8 ] of the tree is used as a local configuration for studying the dynamic

X epidemics model.

FIG. 4. Nonzero eigenvaluea, and \_ of the growth-  tjons, it was not possible to extract analytically the eigenval-
evolution transfer matrixGT as a function of the fractiox of ues of theGT matrix. It is found numerically that two dif-
particles on a chain of hexagons. The behavior of the eigenvalue fq"erent eigenvalues have nonzero values for the dynamic
the static case is also given. . : L .

epidemics. Similarly to previous results, one calls then
for the largest one ann_ for the second one. These eigen-
values are plotted in Fig. 6 as a functionxofAs x increases

the basic critical exponentsand y. Assuming that the larg- from zero to 1A, decreases from 2 to zero. It is found

est eigenvalue drives the growth process, the mean numpBHmerically th"’,‘b(gdyn)zo'.s‘r’l 641) for trees looped with tet-
g(r) of sites lying on the spreading cluster at a distance rahedrons. This value is a little bit larger than the critical
from the initial site is also obtainable frog(r)~\". . value 0.812 found numerically for trees of typelboped
Develobind -\ . in powers ofx aroundx.— 0 Bne can with triangles in Ref.[1], but very close to the critical value
obtain thep sgalingilawgz(l—)\ )2 and va(l’_)\ )1 0.849 for trees of type Il having the same fraction of sites
and thus retrieve the critical exgonemand 5. One s+hou|d o= 2 that are possible candidates for particle trapping. Recall
notice thatv=1 for chains[1] ‘ that the percolation threshold for ordinary Bethe lattices is
- . (dyn) _ r52__ 2 R sta__ /-,
First, for the chain looped with tetrahedrons the transitiort‘c =(z . 1)/z" in the dyn_am|c case, bm(t =(z-1)/z
is characterized by=y=1 in the static case sinde=1—x. N the static case. One easily verifies that the tree decorated
The expansion ok , [from Eq. (3)] gives v=y=3 for the with tetrahedrons corresponds to a tree with an effective
dynamic epidemics+ ' branching ratio equal to 2.596. Moreover, it can be numeri-

Next, the behavior o, and\_ has been numerically Cally analyzed how , reaches 1(dn§)a‘(cdyn) (from below. It
studied near the criticax®"=0 for the mobile particles '° found that -\, scales ag—xg"". Thusy=y=1 for the

placed on a chain looped with hexagons. It is found that fmdynamlc eplde_ml_a on SUCh a tree of tet_rahedrons.
dynamic epidemics on such a chair y=3, the same expo- . For the sttatlc |n.1pur.|ty case thE matrix is reduced.to a
nent as that found in Ref1] for the chain of squares and that d|agonaIT<Sa) matrix _W'th 16 nonzero el(ftg)nems’. bUt. It was
of triangles. The eigenvalue for the static model of the hex 0t possible to obtain analytically t@T™" matrix eigen-

agonal chain has been numerically obtained to be equal t\(Salues. However, it has been found numerically that there is
1—x. Thus v=\=1 for the static case. only one nonzero eigenvalue=2(1—x), which is drawn in

Fig. 6. Thusx@=1, corresponding to the static epidemics
case on the usual Bethe lattice. This gives alsoy=1.

size ¢ of the spreading cluster and the cluster m&sst
~(X—X;) ¥ and S~(x—X.)~ ? abovex; thereby defining

Ill. STATIC AND DYNAMIC EPIDEMIA
ON A BETHE TREE WITH TETRAHEDRON LOOPS

The Bethe tree with tetrahedron loops is obtained from 2 et . :
the usual Bethe lattice with a branching rate2 for which
one branch out of two is a tetrahedr@orresponding to the

: ; . 1.5 | 1
type-l tree of triangles in Ref.1]). One can also consider tetrahedron tree
that the Bethe lattice has locall=2 or 4 every two nodes.
The local configurations to be examined contain five sites as
schematically drawn in Fig. 5. The fraction of trapping sites
is ¢= . In order to describe the dynamic epidemics model 0.5 [ e - 1
on such a tree, there ar@232 different possible configu- '
rations. TheT andG matrices can be constructed consider-
ing the two-stage invasion of the propagation front. One 0 : : : ‘
should emphasize that the sum of the elements of each col- 6 0z 04 06 08 1
umn of G is now equal to 2 instead of 1 as in Sec. Il for
chains since each local configuration is followed by 2 FIG. 6. Nonzero eigenvaluea, and A_ of the growth-
next possible ones. evolution transfer matrixGT as a function of the fractiox of

Even though it was possible to write down theX3@2 T particles on a tree of tetrahedrons. The eigenvalue for the static case
and G matrices, taking into account symmetric configura-is also shown.

eigenvalues
-
T
1
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IV. DISCUSSION TABLE |. Percolation thresholdsS? and x¥" for, respec-

tively, static and mobile particles on 1D-like lattices decorated with

A chain looped with hexagons, a spatial chain looped witherahedrons or hexagons and on a Bethe tree with tetrahedrons. The
tetrahedrons, and a tree looped with tetrahedrons have be@fction ¢ of sites that are possible candidates for trapping and

used in order to describe dynamic invasion percolation in &ritical components and » describing the divergence of the cluster
medium containing mobile or stationary “impurities.” The mass and the correlation length, respectively, near the threshold for
epidemics front growth has been described through a&tatic and dynamic epidemia are given.
growth-evolution—transfer-matrix method. The largest eigen
value of the epidemia evolution matr@T is a measure of v=y V=Y
the correlation length of the growing system. The linear de-

i (sta) (dyn)
pendence for the chain decorated with hexagons is une>£‘-attlce ¢ % Xe sta dyn
pected if compared to the nonlinear behavior of the stati¢hains of hexagons 3 0 0 1 3
eigenvalue for the chain with squares. It has been found that )
the critical exponents describing the divergence of the clustefh@in of tetrahedrons 5 0 0 1 3
massS and correlation lengtl§ near the thresholdt; have  tee with tetranedrons 2 05  0.85164 1 1

the same values for both static and dynamic epidemics on a
tree looped with tetrahedrons and are similar to those exam-

ined in Ref.[1]. . . . is recovered for the tree looped with tetrahedrons. Moreover,
On the two studied chains, the percolation thresholds fo[he values of the critical exponents for-1 are found to be

zoéh St?)tr']c sgdtgén?]rgl'g esl'dgm'rf: 2?;?“?(') t?] dZ?)I:.t:OVSV- nchanged between static and dynamic epidemics. The be-
Ver, Nonzero thres values hav N found on € Siyior is again ‘“superuniversal” fod>1, in contrast tad

tree. The 3D tree and the tree of type Il looped with triangles :
. : . . . =1 lattices.

have the same fraction of trapping sites in fact. This leads

one to emphasize the relevance of the fraction of sites that

are candidates for particle trapping rather than the connectiv-

ity itself on the threshold value of dynamic epidemics. The

theoretical results found herein are summarized in Table I. | gratefully thank M. Ausloos for pointing out different

One should note that the universality of dynamic epidemicsaspects of this study and for comments on the manuscript.
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