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Static and dynamic epidemia on chains and trees with two- and three-dimensional loops

Kristinka Ivanova*
Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko chaussee 72, Sofia 1784, Bulgaria

~Received 11 August 1997!

The dynamic epidemic model considers the expansion of a cluster in a medium containing a fractionx of
mobile particles that are pushed by a propagation front. This model is exactly solved here on two- and
three-dimensional chains and a Bethe tree, which are all decorated with consecutive either hexagon or tetra-
hedron loops. The exact values for the percolation thresholdxc and the critical exponents are calculated and
compared to the static hindrance cases. The fraction of site candidates for particle trapping on a tree is the
relevant parameter for the threshold value of such dynamic epidemics in high dimensions.
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I. INTRODUCTION

The dynamic epidemic model is relevant for describi
the spreading of a fluid in a medium containing mobile i
purities and also other physical systems such as river spr
ing, traffic jams, rough surfaces, electrical conduction in h
erogeneous media, and polymer growth in solutio
Vandewalle and Ausloos@1# have solved exactly such a dy
namic epidemic model with the ‘‘growth–transfer-matrix
method for various chains and trees that contain loops
thus allow for trapping of particles along~and behind! the
propagation front. The pushing and trapping of particles
such a model lead to nontrivial surface roughness@2,3#.

More complicated basic units and higher-dimensio
cases are of interest. It is indeed known that critical ex
nents are dimensionality dependent@4#. Higher-dimensional
loops are also encountered in other fields of science suc
biology, traffic, and economics. Finally, in higher dime
sions, one can expect better agreement with theoretical
siderations based on a Bethe lattice@5#, which can be con-
sidered as an infinite-dimensional network.

The aim of this paper is to provide an exact solution of
static and dynamic epidemics model on lattices with loo
constructed in a plane or in three-dimensional~3D! space. A
chain of hexagons, a 3D chain of tetrahedrons, and a tre
tetrahedrons are considered below. Notice that the chain
hexagons generalizes the problem studied in Ref.@1# already
as if a multiple invasion step or several stages can occu
traffic physics this can be considered to correspond to dif
ent by-passing velocities, or stops at parking places, in c
tal growth to different critical radii for trapping and cons
quently different ‘‘critical velocities’’@6# and finally in fluid
invasion to different retention times.

II. STATIC AND DYNAMIC EPIDEMIA
ON LOOPED CHAINS

In Fig. 1 two chains are presented: The first one is a ch
decorated with hexagons@Fig. 1~a!# and the second chain i
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one with tetrahedrons as loops between sites@Fig. 1~b!#. The
empty sites are denoted by open circles, while the sites
cupied by a particle are denoted by solid circles. The fract
w of sites that are candidates for particle trapping has a
ferent value on each lattice. For the chain looped with he
gons w54

5, while w5 2
3 for the chain looped with tetrahe

drons. Let a fractionx of sites be occupied by particles an
for convenience let the front go from left to right. At eac
growth step, if a nearest-neighboring site on the right
empty, the site is invaded. However, if this site contains
particle, the particle is pushed onto the next-neare
neighboring siteif the latter is empty. If this next-neares
neighboring site contains a particle, the growth is block
When there is some bypassing channel, like in decora
chains, the percolation process is expected to take place u
some impurity concentration to be determined.

A. Chain of tetrahedrons

The basic set of local configurations on a chain of tet
hedrons contains four local sites~Fig. 2!. In order to describe
the dynamical process of cluster spreading and particle p
ing on a chain looped with tetrahedrons, there are 24516
different possible configurations to examine~Fig. 2!. As a
result, a 16316 transfer matrixT has to be written corre-
sponding to an invasion front from the left-hand site of t
chain. As was pointed out in Ref.@1#, the configuration label
or ‘‘configuration order’’ is crucial for the optimal descrip
tion of the transfer matrices. Each element of theT matrix
Ti j is the probability of obtaining the configuration labeledi
invading the configuration labeledj such thatu i &5(Ti j u j &.
Several configurations carry identical weight, but for a bet
structure of the matrix and computational precision all
elements have been kept at first. The evolution rules and
techniques of retrieving theTi j are described in detail in Ref
@1# for the chain of triangles. The same procedure has b
followed here. The nonzero elements of theT matrix when
the epidemics invade the left-hand site of each configura
~Fig. 2! can be easily written and are omitted here due
space limitation.

One has to know the probability of finding th
next configuration on the chain, i.e., the growth evo
tion matrix G made of two vector rows
4827 © 1998 The American Physical Society
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s15$1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0%

s25$0,0,0,0,1,0,0,1,0,1,1,0,1,1,1,1%.

Thus theG matrix can be constructed as each element of
row is multiplied byx3, x2(12x), (12x)2, or (12x)3 in
the following manner: 1st row,s1(12x)3; 2nd row,
s2(12x)3; 3rd to 5th rows,s1x(12x)2; 6th to 8th rows,
s2x(12x)2; 9th to 11th rows,s1x2(12x); 12th to 14th
rows, s2x2(12x); 15th row, s1x3; 16th row, s2x3, where
each elementGi j is the average number of configurationsi
next to a configurationj . The sum of the elements of eac
column ofG is also 1 since each local configuration is co
nected to only one configuration on a chain. The grow
process is thus well described by the iteration of the ma
GT. This matrix has two degenerate nonzero eigenvaluesl6

given by

FIG. 1. Two different types of chains:~a! a chain of hexagons
and ~b! a chain of tetrahedrons. The empty sites are denoted
open circles, while the sites occupied by a particle are denote
solid circles.

FIG. 2. Sixteen local configurations used to describe the
namic epidemics model on a chain of tetrahedrons. The empty
are denoted by open circles, while the sites occupied by a partic
denoted by solid circles.
e
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l65 1
9 @724x12x225x36~12x!

3~4124x152x2184x317x4!1/2#, ~1!

which are both strictly less than 1 expect forx50 ~Fig. 3!.
The critical pointxc

(dyn) occur when the largest eigenvalue
equal to 1. The spreading of the invading cluster through
chain is thus possible only in the absence of impurities si
xc

(dyn)50.
One should note that the case of static particles is rec

ered for aT matrix whose nonzero elements are~1,1!, ~3,3!,
~4,4!, and~9,9! only; each such element is equal to one. Th
the GT~sta! matrix has only one nonzero somewhat trivi
eigenvaluel512x ~Fig. 3! giving xc

~sta!50.

B. Chain of hexagons

On a chain of hexagons, the basic set of local configu
tions contains six sites. Thus 26564 different possible con-
figurations are needed to describe the epidemia propaga
on the chain with hexagon loops. A three-stage invasion
to be considered due to existing configurations with two s
on the top and/or bottom row being candidates on which
particle trapping can take place. The transferT and growthG
matrices can be easily constructed. It has been numeric
estimated that two nonzero eigenvaluesl1 andl2exist for
this dynamic epidemics. These eigenvalues are shown in
4 as a function of the particle fractionx. The critical fraction
of particles isxc

~dyn!50. One can easily observe that the co
respondingGT~sta! for static particles has only one nonze
eigenvaluel ~Fig. 4!. The critical threshold for the static
model isxc

~sta!50. One should note the linear dependence
the eigenvaluel corresponding to the static case on the fra
tion x, in contrast to the one-dimensional chain looped w
squares.

C. Critical exponents

Various physical quantities usually exhibit a power-la
divergence near a percolation threshold; such are the lin

y
by

-
es
ar

FIG. 3. Nonzero eigenvaluesl1 and l2 of the growth evolu-
tion transfer matrixGT as a function of the fractionx of particles
for a chain of tetrahedrons. The eigenvalue for the static case is
illustrated.
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size j of the spreading cluster and the cluster massS, j
;(x2xc)

2n and S;(x2xc)
2g abovexc thereby defining

the basic critical exponentsn andg. Assuming that the larg-
est eigenvalue drives the growth process, the mean num
g(r ) of sites lying on the spreading cluster at a distancr
from the initial site is also obtainable fromg(r );l1

r .
Developing 12l6 in powers ofx aroundxc50, one can

obtain the scaling lawsj2(12l1)22 and S;(12l1)21

and thus retrieve the critical exponentsn andg. One should
notice thatn5g for chains@1#.

First, for the chain looped with tetrahedrons the transit
is characterized byn5g51 in the static case sincel512x.
The expansion ofl1 @from Eq. ~3!# gives n5g53 for the
dynamic epidemics.

Next, the behavior ofl1 and l2 has been numerically
studied near the criticalxc

~dyn!50 for the mobile particles
placed on a chain looped with hexagons. It is found that
dynamic epidemics on such a chainn5g53, the same expo
nent as that found in Ref.@1# for the chain of squares and th
of triangles. The eigenvalue for the static model of the h
agonal chain has been numerically obtained to be equa
12x. Thusn5l51 for the static case.

III. STATIC AND DYNAMIC EPIDEMIA
ON A BETHE TREE WITH TETRAHEDRON LOOPS

The Bethe tree with tetrahedron loops is obtained fr
the usual Bethe lattice with a branching ratez52 for which
one branch out of two is a tetrahedron~corresponding to the
type-I tree of triangles in Ref.@1#!. One can also conside
that the Bethe lattice has locallyz52 or 4 every two nodes
The local configurations to be examined contain five sites
schematically drawn in Fig. 5. The fraction of trapping sit
is w5 2

3. In order to describe the dynamic epidemics mo
on such a tree, there are 25532 different possible configu
rations. TheT andG matrices can be constructed consid
ing the two-stage invasion of the propagation front. O
should emphasize that the sum of the elements of each
umn of G is now equal to 2 instead of 1 as in Sec. II f
chains since each local configuration is followed byz52
next possible ones.

Even though it was possible to write down the 32332 T
and G matrices, taking into account symmetric configur

FIG. 4. Nonzero eigenvaluesl1 and l2 of the growth-
evolution transfer matrixGT as a function of the fractionx of
particles on a chain of hexagons. The behavior of the eigenvalu
the static case is also given.
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tions, it was not possible to extract analytically the eigenv
ues of theGT matrix. It is found numerically that two dif-
ferent eigenvalues have nonzero values for the dyna
epidemics. Similarly to previous results, one calls thenl1

for the largest one andl2 for the second one. These eige
values are plotted in Fig. 6 as a function ofx. As x increases
from zero to 1,l1 decreases from 2 to zero. It is foun
numerically thatxc

~dyn!50.851 64~1! for trees looped with tet-
rahedrons. This value is a little bit larger than the critic
value 0.812 found numerically for trees of type I~looped
with triangles! in Ref. @1#, but very close to the critical value
0.849 for trees of type II having the same fraction of sit
w5 2

3 that are possible candidates for particle trapping. Re
that the percolation threshold for ordinary Bethe lattices
xc

~dyn!5(z221)/z2 in the dynamic case, butxc
~sta!5(z21)/z

in the static case. One easily verifies that the tree decor
with tetrahedrons corresponds to a tree with an effec
branching ratio equal to 2.596. Moreover, it can be nume
cally analyzed howl1 reaches 1 nearxc

~dyn! ~from below!. It
is found that 12l1 scales asx2xc

~dyn! . Thusn5g51 for the
dynamic epidemia on such a tree of tetrahedrons.

For the static impurity case theT matrix is reduced to a
diagonalT~sta! matrix with 16 nonzero elements, but it wa
not possible to obtain analytically theGT~sta! matrix eigen-
values. However, it has been found numerically that ther
only one nonzero eigenvaluel52(12x), which is drawn in
Fig. 6. Thus,xc

~sta!5 1
2 , corresponding to the static epidemic

case on the usual Bethe lattice. This gives alson5g51.

or

FIG. 5. Hierarchical tree with a branching ratez52: ~a! one
branch over two is looped with a tetrahedron and~b! a small portion
of the tree is used as a local configuration for studying the dyna
epidemics model.

FIG. 6. Nonzero eigenvaluesl1 and l2 of the growth-
evolution transfer matrixGT as a function of the fractionx of
particles on a tree of tetrahedrons. The eigenvalue for the static
is also shown.
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IV. DISCUSSION

A chain looped with hexagons, a spatial chain looped w
tetrahedrons, and a tree looped with tetrahedrons have
used in order to describe dynamic invasion percolation i
medium containing mobile or stationary ‘‘impurities.’’ Th
epidemics front growth has been described through
growth-evolution–transfer-matrix method. The largest eig
value of the epidemia evolution matrixGT is a measure of
the correlation length of the growing system. The linear
pendence for the chain decorated with hexagons is un
pected if compared to the nonlinear behavior of the st
eigenvalue for the chain with squares. It has been found
the critical exponents describing the divergence of the clu
massS and correlation lengthj near the thresholdxc have
the same values for both static and dynamic epidemics o
tree looped with tetrahedrons and are similar to those ex
ined in Ref.@1#.

On the two studied chains, the percolation thresholds
both static and dynamic epidemics are equal to zero. H
ever, nonzero threshold values have been found on the
tree. The 3D tree and the tree of type II looped with triang
have the same fraction of trapping sites in fact. This le
one to emphasize the relevance of the fraction of sites
are candidates for particle trapping rather than the conne
ity itself on the threshold value of dynamic epidemics. T
theoretical results found herein are summarized in Tabl
One should note that the universality of dynamic epidem
-
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is recovered for the tree looped with tetrahedrons. Moreo
the values of the critical exponents ford.1 are found to be
unchanged between static and dynamic epidemics. The
havior is again ‘‘superuniversal’’ ford.1, in contrast tod
51 lattices.
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TABLE I. Percolation thresholdsxc
~sta! and xc

~dyn! for, respec-
tively, static and mobile particles on 1D-like lattices decorated w
tetrahedrons or hexagons and on a Bethe tree with tetrahedrons
fraction w of sites that are possible candidates for trapping a
critical componentsg andn describing the divergence of the clust
mass and the correlation length, respectively, near the threshol
static and dynamic epidemia are given.

Lattice w xc
~sta! xc

~dyn!

n5g n5g

sta dyn

chains of hexagons 4
5 0 0 1 3

chain of tetrahedrons 2
3 0 0 1 3

tree with tetrahedrons 2
3 0.5 0.851 64 1 1
ci.
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